Skip to main content Skip to secondary navigation

ImageNet Training

Main content start
 Submission DateModelTime to 93% AccuracyCost (USD)Max AccuracyHardwareFramework

Mar 2020

ResNet50-v1.5

Apsara AI Acceleration(AIACC) team in Alibaba Cloud

source

0:02:38$14.4293.04%16 ecs.gn6e-c12g1.24xlarge (AlibabaCloud)AIACC-Training 1.3 + Tensorflow 2.1

May 2019

ResNet-50

ModelArts Service of Huawei Cloud

source

0:02:43N/A93.10%16 nodes with InfiniBand (8*V100 with NVLink for each node)Moxing v1.13.0 + TensorFlow v1.13.1

Dec 2018

ResNet-50

ModelArts Service of Huawei Cloud

source

0:09:22N/A93.23%16 * 8 * Tesla-V100(ModelArts Service)Huawei Optimized MXNet

Sep 2018

ResNet-50

fast.ai/DIUx (Yaroslav Bulatov, Andrew Shaw, Jeremy Howard)

source

0:18:06$118.0793.11%16 p3.16xlarge (AWS)PyTorch 0.4.1

Sep 2018

Resnet 50

Andrew Shaw, Yaroslav Bulatov, Jeremy Howard

source

0:18:53$61.6393.19%64 * V100 (8 machines - AWS p3.16xlarge)ncluster / Pytorch 0.5.0a0+0e8088d

Mar 2020

ResNet50-v1.5

Apsara AI Acceleration(AIACC) team in Alibaba Cloud

source

0:21:38$7.4393.05%1 ecs.gn6e-c12g1.24xlarge (AlibabaCloud)AIACC-Training 1.3 + Tensorflow 2.1

Aug 2019

Resnet 50

ZTE AI Platform

source

0:23:11N/A93.03%8 nodes with InfiniBand (8*P100 for each node)TensorFlow v1.12.0

Sep 2018

Resnet 50

Andrew Shaw, Yaroslav Bulatov, Jeremy Howard

source

0:29:43$48.4893.02%32 * V100 (4 machines - AWS p3.16xlarge)ncluster / Pytorch 0.5.0a0+0e8088d

Apr 2018

ResNet50

Google

source

0:30:43N/A93.03%Half of a TPUv2 PodTensorFlow 1.8.0-rc1

Apr 2018

AmoebaNet-D N6F256

Google

source

1:06:32N/A93.03%1/4 of a TPUv2 PodTensorFlow 1.8.0-rc1

Apr 2019

ResNet50

Setu Chokshi (MS AI MVP | PropertyGuru)

source

1:42:23$20.8993.02%Azure ND40s_v2PyTorch 1.0

Feb 2019

Resnet 50 v1

GE Healthcare (Min Zhang)

source

1:44:34$42.6693.24%8*V100 (single p3.16xlarge)tensorflow 1.11 + horovod

Apr 2018

AmoebaNet-D N6F256

Google

source

1:58:24N/A93.17%1/16 of a TPUv2 PodTensorFlow 1.8.0-rc1

Sep 2018

ResNet50

Google Cloud TPU

source

2:44:31$12.6093.34%GCP n1-standard-2, Cloud TPUTensorFlow v1.11.0

Apr 2018

Resnet 50

fast.ai + students team: Jeremy Howard, Andrew Shaw, Brett Koonce, Sylvain Gugger

source

2:57:28$72.4093.05%8 * V100 (AWS p3.16xlarge)fastai / pytorch

Apr 2018

ResNet50

Intel(R) Corporation

source

3:25:55N/A93.02%128 nodes with Xeon Platinum 8124M / 144 GB / 36 Cores (Amazon EC2 [c5.18xlarge])Intel(R) Optimized Caffe

Apr 2018

ResNet56

Intel(R) Corporation

source

3:31:47N/A93.11%128 nodes with Xeon Platinum 8124M / 144 GB / 36 Cores (Amazon EC2 [c5.18xlarge])Intel(R) Optimized Caffe

Sep 2018

ResNet50

Google Cloud TPU

source

5:52:31$27.0093.36%GCP n1-standard-2, Cloud TPUTensorFlow v1.11.0

Apr 2018

ResNet50

Intel(R) Corporation

source

6:09:50N/A93.05%64 nodes with Xeon Platinum 8124M / 144 GB / 36 Cores (Amazon EC2 [c5.18xlarge])Intel(R) Optimized Caffe

Apr 2018

AmoebaNet-D N6F256

Google Cloud TPU

source

7:28:30$49.3093.11%GCP n1-standard-2, Cloud TPUTensorFlow 1.8.0-rc0

Apr 2018

ResNet50

Google Cloud TPU

source

8:52:33$58.5393.11%GCP n1-standard-2, Cloud TPUTensorFlow v1.8rc1

Mar 2018

ResNet50

Google Cloud TPU

source

12:26:39$82.0793.15%GCP n1-standard-2, Cloud TPUTensorFlow v1.7rc1

Aug 2019

Resnet 50

Chuan Li

source

12:39:49$19.0093.05%Lambda GPU Cloud - 4x GTX 1080 Tincluster / Pytorch 1.0.0

Jan 2018

ResNet50

DIUX

source

14:37:59$358.2293.07%p3.16xlargetensorflow 1.5, tensorpack 0.8.1

Dec 2017

ResNet152

ppwwyyxx

source

1 day, 20:28:27N/A93.94%8 P100 / 512 GB / 40 CPU (NVIDIA DGX-1)tensorpack 0.8.0

Oct 2017

ResNet152

Stanford DAWN

source

10 days, 3:59:59$1112.6493.00%8 K80 / 488 GB / 32 CPU (Amazon EC2 [p2.8xlarge])MXNet 0.11.0

Oct 2017

ResNet152

Stanford DAWN

source

13 days, 10:41:37$2323.3993.38%4 M60 / 488 GB / 64 CPU (Amazon EC2 [g3.16xlarge])TensorFlow v1.3