Snorkel MeTaL: Weak Supervision for Multi-Task Learning
Abstract
Many real-world machine learning problems are challenging to tackle for two reasons: (i) they involve multiple sub-tasks at different levels of granularity; and (ii) they require large volumes of labeled training data. We propose Snorkel MeTaL, an end-to-end system for multi-task learning that leverages weak supervision provided at multiple levels of granularity by domain expert users. In MeTaL, a user specifies a problem consisting of multiple, hierarchically-related sub-tasks — for example, classifying a document at multiple levels of granularity — and then provides labeling functions for each sub-task as weak supervision. MeTaL learns a re-weighted model of these labeling functions, and uses the combined signal to train a hierarchical multi-task network which is automatically compiled from the structure of the sub-tasks. Using MeTaL on a radiology report triage task and a fine-grained news classification task, we achieve average gains of 11.2 accuracy points over a baseline supervised approach and 9.5 accuracy points over the predictions of the user-provided labeling functions.